

FOR AGRICULTURAL EXPERTISE IN PRODUCT DEVELOPMENT

LIGHT, GROWTH and DEVELOPMENT of PLANTS

Hendrik-Jan van Telgen, Botany B.V.

www.botany.nl

Introduction Botany B.V.

- Private R&D company 2003
 - Business-to-business
 - Confidential testing
 - Product development
 - Demonstration of innovations
- Located in SE of the Netherlands
 - Campus Greenport Venlo
 - LED R&D facility Brightbox
 - High-Tech Horticulture R&D Lab Innoveins

Botany B.V. participates in:

- Brightlands Campus Greenport Venlo
- www.brightlands.com/brightlands-campus-greenport-venlo
- Brightbox LED Research & Demonstration facility
 - Philips, HAS University
- http://www.brightbox-venlo.nl/en
- Innoveins R&D Lab for High-Tech Horticulture
 - Blue Engineering, Bluehub
 - LED, robotics, seed technology, water treatment
- http://www.innoveins.co/

Clients in Product Development

Light: source of life on earth

- Solar radiation determines life on planet Earth (and organisms have adapted to that)
- Heat source → driving force for evaporation and condensation of water, allowing life on earth
- Driving force for season changes
- Energy source for photosynthesis: $CO_2 + H_2O \rightarrow sucrose + O_2$

Light: visible part of solar radiation

THE ELECTROMAGNETIC SPECTRUM

www.botany.nl

Physical nature of Light

Christiaan Huijgens (1629 – 1695),
 1690: Wave → Energy → Interference

Isaac Newton (1643 – 1727), 1670:
 Particles → Energy → Reflection and refraction

- Max Planck (1858 1947), 1900: Light is energy particle (photon) and wave! Longer wavelength = lower energy (Nobel prize 1918)
 - Albert Einstein (1879 1955), 1905:
 Photo-electric effect (Nobel prize 1921)

www.botany.nl

How to quantify light?

• Light energy flux: Watt/m²

- For detection by the human eye: Lumen
 - Lux = Lumen/m²

- Photon flux density:
 - Number of photons/surface/time: μmoles/m²/s
 - 10.000 lux = 27 W/m² = 125 µmoles/m²/s
 - 400 J/cm²/day outside = 10 hrs of 15.000 lux

Difference in sensitivity human eye/plant

• At equal photon flux per wavelength

- At equal photon flux per wavelength
- Light in horticulture:
 - µmol/m²/s between 400-700 nm (PAR) important, Lux unfit for use!
- Light HPS-lamps is yellow-orange: highest sensitivity of human eye

Piet Mondriaan was aware of this

• Natura artis magistra – Nature teaches the arts

π

GRICU

Role of light in plants 1

- Light quantity: energy supply for photosynthesis
 - Daily light integral basis for growth (mass increase)

- Light quality (light colour, wavelength)
 - Plant shape, axillary bud break, bud abortion, dormancy breaking, other developmental processes
- Light period:
 - Flowering, flower induction, dormancy induction, growth

Light: essential for growth and development

Sun flower: germination under low light

1. Light quantity

Energy source for photosynthesis → production of assimilates → growth

- More assimilates → higher quality or production
 - More fruits, more flowers, more branching, easier rooting of cuttings
 - Total Daily Light Sum

Example: Kalanchoe blossfeldiana

- Supplemental light in autumn and winter
 - Faster flower induction under high DLI
 - More and heavier inflorescenses with more flowers under high DLI

Example: Tomato production

- More uniform production with Supplemental Light
 - 188 µmol/m²/s (≈ 14.500 lux)

Fotosyntheserate

Photosynthesis: peaks at 400-500 nm and 600-700 nm

• What wave lengths are used by the plant?

Role of light in plants 2

B' stany

Role of light in plants 3

Growing under LEDs: red and blue are sufficient

0 ᇒ

G 고 0

 \subset R ⊳

 \times Τ 찌

z

www.botany.nl

Receptors for light colour

- In all green parts
 - Leaf
 - Stem
 - Buds
- •Blue, red
 - Fully absorbed
- •Green, far-red
 - Partly transmitted
 - Partly reflected

<

0

P M E

Response to light quality

- Light colour affects development
- Each program depends on specific wavelength & specific light receptor (pigment)
- Blue light: 3 pigments
 - Phototropin: bending towards light
 - Cryptochrome: hypocotyl elongation
 - Zeaxanthin: opening stomata
- Red & Far red: 1 pigment
 - Phytochrome

BLUE Light

- High blue = open habitat = few neighbours
 - Compact growth: short internodes, smaller and thicker leaves

- <u>Reduction</u> of % blue light in spectrum stimulates stem elongation
- •Blue light stimulates:
 - Opening of stomata
 - Anthocyanin synthesis

RED & FAR-RED Light

- Ratio of R:FR is important
- R:FR sun light= 1.2 → normal plant development
 - Increase in axillary shoots (branching)
 - Low flower & fruit abortion
- R:FR under leaf canopy = 0.13
 - Etiolation ('shade avoidance')
 - Increase in leaf surface, decrease in leaf thickness, lower branching and bud break
 - No germination of light-dependent seeds
- R:FR at sunset = 0.9-1.0

0

G R

EXPER

m

z

PRODU

0

MEN

Shade avoidance reaction

- R:FR > 1.2 (sun light): normal plant development
- R:FR < 0.8
 - Under leaf canopy or from reflection by neighbouring plants
 - Etiolation
 - All energy to aerial parts
 - Decrease in root mass, making plants vulnerable to drought

Light-dependent seed germination

- Light germinators such as *Calluna vulgaris* or *Digitalis purpurea* require high P_{FR} for germination
- Under leaf canopy or in soil R:FR < 0.2 \rightarrow low P_{FR}, high P_R
- Tree felling or soil disturbance brings light to seeds → increase in P_{FR} → germination

Light period (day length)

• Bean plant grown at 12 hrs DL under dim light

Plant displays sleep-wake rythm

At higher latitudes, long days in summer

Whereas other climate factors vary each year..

•On each latitude the photoperiod is constant from year-to-year!

- Survival strategy at higher latitudes!
 - Shortening photoperiod \rightarrow winter is approaching
 - Increasing photoperiod \rightarrow summer is coming
- Many plant species and animals regulate their growth and reproduction cycle on photoperiod
- Sensing of day length mediated by Phytochrome

RED & FAR-RED receptor: Phytochrome

- P_{FR} re-converted into P_R by FAR-RED light and darkness
 - R:FR at sunset = 0.9-1.0 →
 - changes P_{FR}-P_R ratio
- Plant detects decrease in P_{FR} and counts hours to next increase at sunrise
- A short flash of RED light during night will shift the P_{FR}-P_R ratio towards P_{FR}

Day length and flowering

- LDP will not flower at low P_{FR} \rightarrow short night necessary for sufficient level of P_{FR}
- SDP will not flower at high P_{FR} \rightarrow long night necessary to lower level of P_{FR}
- Short flash with RED will induce flowering in LDP and inhibit flowering in SDP
- Last flash counts!

EXPERIMENT

A unique characteristic of phytochrome is reversibility in response to red and far-red light. To test whether phytochrome is the pigment measuring interruption of dark periods, researchers observed how flashes of red light and far-red light affected flowering in "short-day" and "long-day" plants.

www.botany.n

Summary

- Light quantity = Energy for Photosynthesis = Growth = Basis for Food Chain
 - Chlorophyll, carotene (400 700 nm)
- Light quality = Developmental Program
 - Plant shape, elongation, branching, germination
 - 350-450 nm (UV-Blue) and 680-770 nm (Red-FR)
 - Cryptochrome, Fototropin, Zeaxanthanin, Phytochrome
- Light period (day length)
 - Internal clock, flowering, reproduction, dormancy, bud break
 - 680-770 nm (Red-FR), Phytochrome

Acknowledgements

• Dagmar De Greef, Min. of Education Flanders (B)

- Roger P. Hangarter, Dept of Biology, Indiana University, Bloomington IND, USA
 - Motto Indiana University: Lux et veritas = Light and Truth
 - http://plantsinmotion.bio.indiana.edu/plantmotion/starthere.html

• Ep Heuvelink and Leo Marcelis, Wageningen University and Greenhouse Horticulture

