Light, plants and LED

Esther de Beer Philips Lighting July 13, 2017

Van der Harg Pot roses Netherlands 19

100 10 10 1

Why does a plant need light?

Plants use light for:

- 1. **Photosynthesis**, growth energy
- 2. Plant **development**, flowering, morphology etc.

Both simultaneously take place in the plant and interact with each other.

A plant needs light to grow: photosynthesis

Photons are absorbed by pigments in the plant (e.g. chlorophyll). Carbon dioxide and water are converted to glucose, which is an energy source for the plant.

Confidential

Quantifying light for plants

Green plants

Metric is based on the human eye sensitivity curve.

Lumen is a measure of the total amount of visible light emitted by a source.
Lux (=lumen/m²) is a measure of the amount of light per surface area.

Metric is based on the photosynthesis of plants. Photosynthetically active radiation (PAR): 400 - 700 nm.

Photosynthetic Photon Flux (**PPF**), in **Micromole/s** is # photons in 400-700nm range. Photosynthetic Flux Density (**PPFD**) is a measure of the amount of PAR per surface area, expressed in **Micromole/m²/s**. Daily Light integral: **Mole/m²/day**.

A plant needs light to develop: morphology

Light also stimulates specific plant processes and morphology

Receptors playing an important role in these processes are Cryptochromes, Phytochromes and Phototropin Confidential PHILIPS

Plants use light for development

Plants have several **photoreceptors** that respond to different wavelengths. These photoreceptors trigger plant development responses.

Light characteristics influence plants over life

Key factors influencing both plant growth and development:

- Light intensity
- Light/dark duration (photoperiod)
- Light spectrum (light quality)

Light sum over time (DLI)

Spectra of sunlight vs HPS vs LED

DB/W/R/FR LED

Recommended Daily Light Integrals

Species	Average Daily Light Integral (Moles per Day)																
	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30		
Fuchsia																	
Lilium longiflorum (easter lily)																	
Ageratum																	
Antirrhinum (snapdragon)																	
Chrysanthemum (potted)																	
Dianthus																Minimu	m
Gazania																	hla quality
Gerbera																	Je quality
Pelargonium hororum (zonal geranium)																Good au	uality
Rose (miniature potted)																Cood qu	lancy
Salvia splendens																	
Angelonia																High qua	ality
Aster																	
Catharanthus (vinca)																	
Celosia																	
Chrysanthemum (garden)																	
Coleus (sun)																	
Coreopsis																	
Cosmos																	
Croton																	
Dahlia																Source:	
Gaura																Measuring Dail	y Light
Hemerocallis																Integral in a Gr	eenhouse;
Lantana																Ariana P. Torre	s and
Lavendula (lavender)																Roberto G. Lop	ez
Tagetes (marigold)																	
Petunia																*See additional s	species on
Phlox (creeping)																published report	
Rudbeckia																	
Scaevola																	
Verbena																	
Viola (pansy)																PHILI	22
Zinnia																	

Natural light for different locations

- **Geography** has big impact on the variation in daylight between summer/winter
- **Greenhouse transmission** determines what fraction of natural light reaches plants

Greenhouse transmission

Determining supplemental lighting needs

Crop

- Recommended DLI for high quality crop
- Light inside greenhouse
- Light deficiency = target

Heuchera 12 Mol/day 5 Mol/day 7 Mol/day

Natural light vs recommended DLI, Michigan

Philips LED 5.1 Mol/day 80 µmol/m²/s (18 hours)

HPS 5.1 Mol/day 80 μmol/m²/s (18 hours)

PHILIPS

Confidential

16

Philips LED 5.1 mol/day 80 μmol/m²/s (18 hours)

HPS 5.1 mol/day 80 μmol/m²/s (18 hours)

Petunia

Dianthus

Philips LED 5.1 mol/day 80 μmol/m²/s (18 hours) HPS 5.1 mol/day 80 μmol/m²/s (18 hours)

Promising results of LED for young plant production

- Compact plugs
- More basal vegetative bud development
- Better root development
- Reduction in the cycle time (seeding till transplant)
- Improved % of plugs ready for transplanting
- Prominent leaf pigmentation
- Early and increased % flowering

Leo van der Harg (Netherlands)

• LED Toplight + 1000W HPS

"Because LEDs do not generate any radiant heat, it is possible to control the temperature and the lighting separately."

- Leo van der Harg, Manager

Iwasaki Bros., Inc. (Oregon, US)

"We've **shortened our crop cycle by up to three weeks**, which means we can get an extra cycle of plants through a greenhouse and that's very exciting, very profitable."

- Jim Iwasaki, Owner and Manager

Rudy Raes, Belgium

Higher yield with lower energy cost. From 50 μ mol/m²/s HPS to 65 μ mol/m²/s LED

"The uniformity and quality of our crops has increased. LED gets us stronger rooting."

- Rudy Raes, Owner Rudy Raes Bloemzaden NV

Growth like never before!

